JIT Compilation

David Chisnall
University of Cambridge
LLVM Summer School, Paris, June 13, 2017



Late Binding

Static dispatch (e.g. C function calls) are jumps to specific
addresses

Object-oriented languages decouple method name from
method address

One name can map to multiple implementations (e.g.
different methods for subclasses)

Destination must be computed somehow



Example: C++

e Mostly static language
e Methods tied to class hierarchy

e Multiple inheritance can combine class hierarchies

class Cls {
virtual void method () ;
};
// object is an instance of Cls or a subclass of
Cls
void function(Cls *object) {
// Will call Cls::method or a subclass
override
object->method () ;




Example: JavaScript

e Prototype-based dynamic object-oriented language
¢ Objects inherit from other objects (no classes)

e Duck typing

a.method = function() { ... };

// Will call method if b or an object on
// b’s prototype chain provides it. No

// difference between methods and

// instance/ variables: methods are just
// instance variables containing

// closures.

b.method () ;




VTable-based Dispatch

e Tied to class (or interface) hierarchy
e Array of pointers (virtual function table) for method dispatch
e Method name mapped to vtable offset

~

struct Foo {

int x;

virtual void foo();
};
void Foo::foo() {}

void callVirtual (Foo &f) {

f.foo();

}

void create () {
Foo f;

callVirtual (f);

2




Calling the method via the vtable

~

f) uwtable ssp {
Foo*) **x

Itbaa !0
%3 = load void ()struct.Foox*)x*x* %2, align 8
tail call void %3(%struct.Foox*x %f)
ret void

}

N\

define void @_Z11callVirtualR3Foo (%struct.Foo* Y%
%1 = bitcast Y%struct.Foox* %f to void (¥%struct.

%2 = load void (%struct.Foo*)**xx*x %1, align 8,

\S

Call method at index O in vtable.



Creating the object

@_ZTV3Foo = unnamed_addr constant [3 x i8x*] [
i8%* null,
i8% bitcast ({ i8*, i8% }* @_ZTI3Foo to i8%*),
i8* bitcast (void (%struct.Foox)x*
@_ZN3Foo3fooEv to i8x%)]

define linkonce_odr void @_ZN3FooC2Ev (}4struct.
Foo* nocapture %this) {
%1 = getelementptr inbounds Y%struct.Foo* Ythis
, i64 0, i32 O
store i32 (...)** bitcast
(i8*x getelementptr inbounds ([3 x i8*]x*
@_ZTV3Foo, 164 0, i64 2) to 132 (...)*x),
132 (...)**xx Y1




Devirtualisation

Any indirect call prevents inlining
Inlining exposes a lot of later optimisations

If we can prove that there is only one possible callee, we can
inline.

Easy to do in JIT environments where you can deoptimise if
you got it wrong.

Hard to do in static compilation



Problems with VTable-based Dispatch

VTable layout is per-class

Languages with duck typing (e.g. JavaScript, Python,
Objective-C) do not tie dispatch to the class hierarchy

Dynamic languages allow methods to be added / removed
dynamically

Selectors must be more abstract than vtable offsets (e.g.
globally unique integers for method names)



Lookup Caching

Method lookup can be slow or use a lot of memory (data
cache)

Caching lookups can give a performance boost

Most object-oriented languages have a small number of
classes used per callsite

Have a per-callsite cache



Callsite Categorisation

e Monomorphic: Only one method ever called
e Huge benefit from inline caching
e Polymorphic: A small number of methods called

e Can benefit from simple inline caching, depending on pattern
e Polymorphic inline caching (if sufficiently cheap) helps

e Megamorphic: Lots of different methods called
e Cache usually slows things down



Inline caching in JITs

e Cache target can be inserted into the instruction stream
e JIT is responsible for invalidation

e Can require deoptimisation if a function containing the cache
is on the stack



Speculative inlining

e Lookup caching requires a mechanism to check that the
lookup is still valid.

e Why not inline the expected implementation, protected by the
same check?

e Essential for languages like JavaScript (lots of small methods,
expensive lookups)



Inline caching

[kup_fn J , $last, fail
hod

e First call to the lookup rewrites the instruction stream

e Check jumps to code that rewrites it back



Polymorphic inline caching

, $expected, cls
hod

, $expected2, cls
hod

Branch to a jump table

Jump table has a sequence of tests and calls

Jump table must grow

e Too many cases can offset the speedup



Trace-based optimisation

Branching is expensive
Dynamic programming languages have lots of method calls
Common hot code paths follow a single path

Chain together basic blocks from different methods into a
trace

Compile with only branches leaving

Contrast: trace vs basic block (single entry point in both,
multiple exit points in a trace)



Type specialisation

Code paths can be optimised for specific types
For example, elide dynamic lookup

Common case: a+b is much faster if you know a and b are
integers!

Can use static hints, works best with dynamic profiling

Must have fallback for when wrong



Deoptimisation

Disassemble existing stack frame and continue in interpreter /
new JIT'd code

Stack maps allow mapping from register / stack values to IR
values

Fall back to interpreter for new control flow
NOPs provide places to insert new instructions
New code paths can be created on demand

Can be used when caches are invalidated or the first time that
a cold code path is used



LLVM: Anycall calling convention

Used for deoptimisation
All arguments go somewhere
Metadata emitted to find where

Very slow when the call is made, but no impact on register
allocation

Call is a single jump instruction, small instruction cache
footprint

Designed for slow paths, attempts not to impact fast path



Deoptimisation example

JavaScript:

g

Deoptimisable pseudocode:

if (!(is_integer(b) && is_integer(c)))
anycall_interpreter(&a, b, c); // Function
does not return
a = b+tc;




Case Study: JavaScriptCore (WebKit)

e Production JavaScript environment

e Multiple compilers!



JavaScript is odd

Only one numeric type (double-precision floating point)
Purely imperative - no declarative class structures
No fixed object layouts

Code executes as loaded, must start running before download
finishes

Little scoping



Web browsers are difficult environments

Most JavaScript code is very simple
Fast loading is very important

Some JavaScript is very CPU-intensive
Fast execution is important

Users care a lot about memory usage!



Before execution

e JSC reads code, produces AST, generates bytecode

e Bytecode is dense and the stable interface between all tiers in
the pipeline



Contrast: V8

e Initial parse skips text between braces
e No stored IR, AST (just pointers into the code)

e Recompilation includes reparse of relevant parts



Overall design: multiple tiers

e First tiers must start executing quickly
e Hot code paths sent to next tiers

e Last tier must generate fast code

Compare with simplified MysoreScript: Two tiers (AST interpreter
/ JIT), functions promoted to JIT after 10 executions.



First tier: LLInt, a bytecode interpreter

Very fast to load

Written in custom low-level portable assembly

Simple mapping from each asm statement to host instruction
Precise control of stack layout, no C++ code

14KB binary size: fits in L1 cache!



Second tier: Baseline JIT

LLInt reads each bytecode, dispatches on demand

After 6 function entries or 100 statement invocations, JIT is
triggered

Simple bytecode JIT, pastes asm similar to LLInt into
sequences.

Exactly the same stack layout as LLInt.
Introduces polymorphic inline caching for heap accesses
Works at method granularity



Why is stack layout important?

e Partial traces may be JIT'd
e Must be able to jump back to LLInt for cold paths

e Remember: Deoptimization



Type feedback

Pioneered by Self
Both LLInt and the baseline JIT collect type information

Later tiers can optimise based on this

More useful than type inference for optimisation (this is
usually type X, vs this type must always be type X, Y, or Z)

General note: for optimisation, X is usually true is often more
helpful than Y is always true if X is a much stronger constraint
than Y (and X is cheap to check).



Other profiling

e Function entry
e Branch targets

e Build common control flow graphs



Tiers 3/4: the high-performance JITs

Profiling from
LLInt and

JS byfecode Basajine
\ Q\ DFG Mode DFG
—r‘ Backend

Type
Bylecode__ Type Lol Check __CPS Opt

Parser Inference Insertion Phases
S58A S5A Opt Lower to
—* —*
Cornersion Ph LLVM IR
FTL Mode 4588

LLVM usage now replaced by B3 (Bare Bones Backend). LLV8 still
uses LLVM for a last-tier JIT in V8.




CPS Optimisers

Continuation-passing style IR

Every call is a tail call, all data flow is explicit
Lots of JavaScript-specific optimisations
Many related to applying type information

CPS not covered much in this course, but lots of recent
research on combining the best aspects of SSA and CPS!



Type inference

Static type inference is really hard for dynamic languages
Must be conservative: bad for optimisation
Type feedback provided by earlier tiers

Propagate forwards (e.g. int32 + int32 is probably int32:
overflow unlikely)

Fed back into later compiler stages

LLInt and baseline JIT collect profiling information



Aside: Samsung's AoT JavaScript compiler

Discontinued research project

Used techniques from symbolic execution to statically find
likely types for all code paths

Generated optimised code

Performance close to state-of-the-art JITs



Tier 3: Data flow graph JIT

Speculatively inlines method calls

Performs dataflow-based analyses and optimizations

Costly to invoke, only done for hot paths

Performs on-stack replacement to fall back to baseline JIT /
LLInt

LLInt
Baseline JIT

DFG JIT

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
(higher is better)



Tier 4: LLVM / B3

Input SSA is the output from the CPS optimisations

Very high costs for optimisation

Latency penalty avoided by doing LLVM compilation in a
separate thread

More advanced register allocator, low-level optimisations
B3 does fewer optimisations, for lower latency (and power

consumption), but still has much better register allocation
than DFG JIT.



Patchpoints for deopimisation

LLVM patchpoint provides jump to the runtime
Stack map allows all live values to be identified

Any that are needed for the interpreter are turned back into
an interpreter stack frame

Interpreter continues

Deoptimisation means incorrect guesses in optimisation: fed
back as profiling information



Patchpoints for object layout

e Speculatively compiled assuming fixed field offsets
e Can become incorrect as more code is executed

e Dynamically patched with correct offsets when hit



bigfib.cpp

FTL Performance (asm.js benchmarks)

cray.c

dry.c

FloathM.c
gce-loops.cpp

n-body.c
Quicksort.c

stepanov_container.cpp

Towers.c

500 1,000

1,500 2,000 2,500 3,000 3500 4,000 4,500
i DFG M FTL

5,000

(Lower is better)

N



FTL vs Clang

M ciang-600 (LM 3.5)

B JSC{FTL 1 JSC (DFG)
biglio
coray
container
dry
float-mm
goC-00ps
r-body
quicksort -
- b
0 05 : = |

25
Seconds

3
(Lower is better)



Lessons

Modern compilers need a variety of different techniques
There's no one-size-fits-all approach
High-level transforms and microoptimisations are both needed

JavaScript is designed to provide full employment for compiler
writers

JSC with FTL performance on asm.js code is similar to GCC
from 10 years ago: there's no such thing as a slow language,
only a slow compiler!



Lessons

Modern compilers need a variety of different techniques
There's no one-size-fits-all approach
High-level transforms and microoptimisations are both needed

JavaScript is designed to provide full employment for compiler
writers

JSC with FTL performance on asm.js code is similar to GCC
from 10 years ago: there's no such thing as a slow language,
only a slow compiler!

The End



