
JIT Compilation

David Chisnall
University of Cambridge

LLVM Summer School, Paris, June 13, 2017

Late Binding

• Static dispatch (e.g. C function calls) are jumps to specific
addresses

• Object-oriented languages decouple method name from
method address

• One name can map to multiple implementations (e.g.
different methods for subclasses)

• Destination must be computed somehow

Example: C++

• Mostly static language

• Methods tied to class hierarchy

• Multiple inheritance can combine class hierarchies�
class Cls {

virtual void method ();

};

// object is an instance of Cls or a subclass of

Cls

void function(Cls *object) {

// Will call Cls:: method or a subclass

override

object ->method ();

} 	� �

Example: JavaScript

• Prototype-based dynamic object-oriented language

• Objects inherit from other objects (no classes)

• Duck typing�
a.method = function () { ... };

...

// Will call method if b or an object on

// b’s prototype chain provides it. No

// difference between methods and

// instance/ variables: methods are just

// instance variables containing

// closures.

b.method (); 	� �

VTable-based Dispatch

• Tied to class (or interface) hierarchy

• Array of pointers (virtual function table) for method dispatch

• Method name mapped to vtable offset�
struct Foo {

int x;

virtual void foo();

};

void Foo::foo() {}

void callVirtual(Foo &f) {

f.foo();

}

void create () {

Foo f;

callVirtual(f);

} 	� �

Calling the method via the vtable

�
define void @_Z11callVirtualR3Foo (% struct.Foo* %

f) uwtable ssp {

%1 = bitcast %struct.Foo* %f to void (% struct.

Foo*)***

%2 = load void (% struct.Foo*)*** %1, align 8,

!tbaa !0

%3 = load void (% struct.Foo*)** %2, align 8

tail call void %3(% struct.Foo* %f)

ret void

} 	� �
Call method at index 0 in vtable.

Creating the object

�
@_ZTV3Foo = unnamed_addr constant [3 x i8*] [

i8* null ,

i8* bitcast ({ i8*, i8* }* @_ZTI3Foo to i8*),

i8* bitcast (void (% struct.Foo*)*

@_ZN3Foo3fooEv to i8*)]

define linkonce_odr void @_ZN3FooC2Ev (% struct.

Foo* nocapture %this) {

%1 = getelementptr inbounds %struct.Foo* %this

, i64 0, i32 0

store i32 (...) ** bitcast

(i8** getelementptr inbounds ([3 x i8*]*

@_ZTV3Foo , i64 0, i64 2) to i32 (...) **),

i32 (...) *** %1

} 	� �

Devirtualisation

• Any indirect call prevents inlining

• Inlining exposes a lot of later optimisations

• If we can prove that there is only one possible callee, we can
inline.

• Easy to do in JIT environments where you can deoptimise if
you got it wrong.

• Hard to do in static compilation

Problems with VTable-based Dispatch

• VTable layout is per-class

• Languages with duck typing (e.g. JavaScript, Python,
Objective-C) do not tie dispatch to the class hierarchy

• Dynamic languages allow methods to be added / removed
dynamically

• Selectors must be more abstract than vtable offsets (e.g.
globally unique integers for method names)

Lookup Caching

• Method lookup can be slow or use a lot of memory (data
cache)

• Caching lookups can give a performance boost

• Most object-oriented languages have a small number of
classes used per callsite

• Have a per-callsite cache

Callsite Categorisation

• Monomorphic: Only one method ever called
• Huge benefit from inline caching

• Polymorphic: A small number of methods called
• Can benefit from simple inline caching, depending on pattern
• Polymorphic inline caching (if sufficiently cheap) helps

• Megamorphic: Lots of different methods called
• Cache usually slows things down

Inline caching in JITs

• Cache target can be inserted into the instruction stream

• JIT is responsible for invalidation

• Can require deoptimisation if a function containing the cache
is on the stack

Speculative inlining

• Lookup caching requires a mechanism to check that the
lookup is still valid.

• Why not inline the expected implementation, protected by the
same check?

• Essential for languages like JavaScript (lots of small methods,
expensive lookups)

Inline caching

�
kup_fn 	� � �

, $last , fail

hod

: 	� �
• First call to the lookup rewrites the instruction stream

• Check jumps to code that rewrites it back

Polymorphic inline caching

�
, $expected , cls

hod

, $expected2 , cls

hod 	� �
• Branch to a jump table

• Jump table has a sequence of tests and calls

• Jump table must grow

• Too many cases can offset the speedup

Trace-based optimisation

• Branching is expensive

• Dynamic programming languages have lots of method calls

• Common hot code paths follow a single path

• Chain together basic blocks from different methods into a
trace

• Compile with only branches leaving

• Contrast: trace vs basic block (single entry point in both,
multiple exit points in a trace)

Type specialisation

• Code paths can be optimised for specific types

• For example, elide dynamic lookup

• Common case: a+b is much faster if you know a and b are
integers!

• Can use static hints, works best with dynamic profiling

• Must have fallback for when wrong

Deoptimisation

• Disassemble existing stack frame and continue in interpreter /
new JIT’d code

• Stack maps allow mapping from register / stack values to IR
values

• Fall back to interpreter for new control flow

• NOPs provide places to insert new instructions

• New code paths can be created on demand

• Can be used when caches are invalidated or the first time that
a cold code path is used

LLVM: Anycall calling convention

• Used for deoptimisation

• All arguments go somewhere

• Metadata emitted to find where

• Very slow when the call is made, but no impact on register
allocation

• Call is a single jump instruction, small instruction cache
footprint

• Designed for slow paths, attempts not to impact fast path

Deoptimisation example

JavaScript:�
c; 	� �
Deoptimisable pseudocode:�
if (!(is_integer(b) && is_integer(c)))

anycall_interpreter (&a, b, c); // Function

does not return

a = b+c; 	� �

Case Study: JavaScriptCore (WebKit)

• Production JavaScript environment

• Multiple compilers!

JavaScript is odd

• Only one numeric type (double-precision floating point)

• Purely imperative - no declarative class structures

• No fixed object layouts

• Code executes as loaded, must start running before download
finishes

• Little scoping

Web browsers are difficult environments

• Most JavaScript code is very simple

• Fast loading is very important

• Some JavaScript is very CPU-intensive

• Fast execution is important

• Users care a lot about memory usage!

Before execution

• JSC reads code, produces AST, generates bytecode

• Bytecode is dense and the stable interface between all tiers in
the pipeline

Contrast: V8

• Initial parse skips text between braces

• No stored IR, AST (just pointers into the code)

• Recompilation includes reparse of relevant parts

Overall design: multiple tiers

• First tiers must start executing quickly

• Hot code paths sent to next tiers

• Last tier must generate fast code

Compare with simplified MysoreScript: Two tiers (AST interpreter
/ JIT), functions promoted to JIT after 10 executions.

First tier: LLInt, a bytecode interpreter

• Very fast to load

• Written in custom low-level portable assembly

• Simple mapping from each asm statement to host instruction

• Precise control of stack layout, no C++ code

• 14KB binary size: fits in L1 cache!

Second tier: Baseline JIT

• LLInt reads each bytecode, dispatches on demand

• After 6 function entries or 100 statement invocations, JIT is
triggered

• Simple bytecode JIT, pastes asm similar to LLInt into
sequences.

• Exactly the same stack layout as LLInt.

• Introduces polymorphic inline caching for heap accesses

• Works at method granularity

Why is stack layout important?

• Partial traces may be JIT’d

• Must be able to jump back to LLInt for cold paths

• Remember: Deoptimization

Type feedback

• Pioneered by Self

• Both LLInt and the baseline JIT collect type information

• Later tiers can optimise based on this

• More useful than type inference for optimisation (this is
usually type X, vs this type must always be type X, Y, or Z)

General note: for optimisation, X is usually true is often more
helpful than Y is always true if X is a much stronger constraint

than Y (and X is cheap to check).

Other profiling

• Function entry

• Branch targets

• Build common control flow graphs

Tiers 3/4: the high-performance JITs

LLVM usage now replaced by B3 (Bare Bones Backend). LLV8 still
uses LLVM for a last-tier JIT in V8.

CPS Optimisers

• Continuation-passing style IR

• Every call is a tail call, all data flow is explicit

• Lots of JavaScript-specific optimisations

• Many related to applying type information

• CPS not covered much in this course, but lots of recent
research on combining the best aspects of SSA and CPS!

Type inference

• Static type inference is really hard for dynamic languages

• Must be conservative: bad for optimisation

• Type feedback provided by earlier tiers

• Propagate forwards (e.g. int32 + int32 is probably int32:
overflow unlikely)

• Fed back into later compiler stages

• LLInt and baseline JIT collect profiling information

Aside: Samsung’s AoT JavaScript compiler

• Discontinued research project

• Used techniques from symbolic execution to statically find
likely types for all code paths

• Generated optimised code

• Performance close to state-of-the-art JITs

Tier 3: Data flow graph JIT

• Speculatively inlines method calls

• Performs dataflow-based analyses and optimizations

• Costly to invoke, only done for hot paths

• Performs on-stack replacement to fall back to baseline JIT /
LLInt

(higher is better)

Tier 4: LLVM / B3

• Input SSA is the output from the CPS optimisations

• Very high costs for optimisation

• Latency penalty avoided by doing LLVM compilation in a
separate thread

• More advanced register allocator, low-level optimisations

• B3 does fewer optimisations, for lower latency (and power
consumption), but still has much better register allocation
than DFG JIT.

Patchpoints for deopimisation

• LLVM patchpoint provides jump to the runtime

• Stack map allows all live values to be identified

• Any that are needed for the interpreter are turned back into
an interpreter stack frame

• Interpreter continues

• Deoptimisation means incorrect guesses in optimisation: fed
back as profiling information

Patchpoints for object layout

• Speculatively compiled assuming fixed field offsets

• Can become incorrect as more code is executed

• Dynamically patched with correct offsets when hit

FTL Performance (asm.js benchmarks)

(Lower is better)

FTL vs Clang

(Lower is better)

Lessons

• Modern compilers need a variety of different techniques

• There’s no one-size-fits-all approach

• High-level transforms and microoptimisations are both needed

• JavaScript is designed to provide full employment for compiler
writers

• JSC with FTL performance on asm.js code is similar to GCC
from 10 years ago: there’s no such thing as a slow language,
only a slow compiler!

The End

Lessons

• Modern compilers need a variety of different techniques

• There’s no one-size-fits-all approach

• High-level transforms and microoptimisations are both needed

• JavaScript is designed to provide full employment for compiler
writers

• JSC with FTL performance on asm.js code is similar to GCC
from 10 years ago: there’s no such thing as a slow language,
only a slow compiler!

The End

