Modern Processor Architectures
(A compiler writer’s perspective)

David Chisnall
University of Cambridge
LLVM Summer School, Paris, June 13, 2017
The 1960s - 1970s

- Instructions took multiple cycles
- Only one instruction in flight at once
- Optimisation meant minimising the number of instructions executed
- Sometimes replacing expensive general-purpose instructions with specialised sequences of cheaper ones
The 1980s

- CPUs became pipelined
- Optimisation meant minimising pipeline stalls
- Dependency ordering such that results were not needed in the next instruction
- Computed branches became very expensive when not correctly predicted
Stall Example

(add)

Fetch → Decode → Register Fetch → Execute → Writeback

(int i = 100; i != 0; i--)

...

start:

...
 add r1, r1, -1
 jne r1, 0, start
(int i=100 ; i!=0 ; i--)
...

start:
...
 add r1, r1, -1
 jne r1, 0, start
Stall Example

(int i=100; i!=0; i--)
...

start:
...
add r1, r1, -1
jne r1, 0, start
Stall Example

\begin{align*}
(\text{int } i=100 ; \ i!=0 \ ; \ i--)
\end{align*}

...

\begin{align*}
\text{start:}
\quad & \ldots \\
\quad & \text{add } r1, \ r1, \ -1 \\
\quad & \text{jne } r1, \ 0, \ \text{start}
\end{align*}
Stall Example

(int i=100 ; i!=0 ; i--)

... start:
 ...
 add r1, r1, -1
 jne r1, 0, start
Stall Example

(int i=100 ; i!=0 ; i--)

...
(int i=100 ; i!=0 ; i--)

...

start:
 ...
 add r1, r1, -1
 jne r1, 0, start
Fixing the Stall

(int i=100 ; i!=0 ; i--)
...

start:
 add r1, r1, -1
 ...
jne r1, 0, start
Fixing the Stall

(int i=100 ; i!=0 ; i--)
...

start:
 add r1, r1, -1
 ...
 jne r1, 0, start

Is this a good solution?
Note about efficiency

- In-order pipelines give very good performance per Watt at low power
- Probably not going away any time soon (see ARM Cortex A7, A53)
- Compiler optimisations can make a big difference!
The Early 1990s

- CPUs became much faster than memory
- Caches hid some latency
- Optimisation meant maximising locality of reference, prefetching
- Sometimes, recalculating results is faster than fetching from memory
- Note: Large caches consume a lot of power, but fetching a value from memory can cost the same as several hundred ALU ops
The Mid 1990s

- CPUs became superscalar
 - Independent instructions executed in parallel
- CPUs became out-of-order
 - Reordered instructions to reduce dependencies
- Optimisation meant structuring code for highest-possible ILP
- Loop unrolling no longer such a big win
Superscalar CPU Pipeline Example: Sandy Bridge

Can dispatch up to six instructions at once, via 6 pipelines:

1. ALU, VecMul, Shuffle, FpDiv, FpMul, Blend
2. ALU, VecAdd, Shuffle, FpAdd
3. Load / Store address
4. Load / Store address
5. Load / Store data
6. ALU, Branch, Shuffle, VecLogic, Blend
Branch Predictors

• Achieve 95+\% accuracy on modern CPUs
• No cost when branch is correctly predicted
• Long and wide pipelines mean very expensive for the remaining 5\%!

With 140 instructions in-flight on the Pentium 4 and branches roughly every 7 cycles, what’s the probability of filling the pipeline?
Branch Predictors

- Achieve 95+% accuracy on modern CPUs
- No cost when branch is correctly predicted
- Long and wide pipelines mean very expensive for the remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches roughly every 7 cycles, what’s the probability of filling the pipeline? Only 35%!
Branch Predictors

- Achieve 95+% accuracy on modern CPUs
- No cost when branch is correctly predicted
- Long and wide pipelines mean very expensive for the remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches roughly every 7 cycles, what’s the probability of filling the pipeline?

Only 35%!
Only 12% with a 90% hit rate!
The Late 1990s

- Single Instruction, Multiple Data (SIMD) became mainstream
- e.g. $1,2,3,4 + 2,3,4,5 = 3,5,7,9$ as a single instruction
- SIMD units are also superscalar, so potentially multiple SIMD instructions dispatched per cycle!
- Factor of $2-4 \times$ speedup when used correctly
- Optimisation meant ensuring data parallelism
- Loop unrolling starts winning again, as it exposes later optimisation opportunities
- Modern compilers unroll near the start and then re-roll loops near the end of the optimisation pipeline!
The Early 2000s

- (Homogeneous) Multicore became mainstream
- Power efficiency became important
- Parallelism provides both better throughput and lower power
- Optimisation meant exploiting coarse-grained parallelism
False sharing and multicore

- Thread a writes to one variable.
- Thread b reads another.
- Both variables are in the same cache line.
- What happens?
Cache coherency: MESI protocol

Modified cache line contains local changes
Shared cache line contains shared (read-only) copies of data
Exclusive cache line contains the only copy of data
Invalid cache line contains invalid data
Cache ping-pong

- Both cores have the line in shared state
- Core 2 acquires exclusive state (around 200 cycles), Core 1 line moves to invalid state
- Core 2 writes, line enters modified state
- Core 1 reads, fetches data from core 2 (around 200 cycles), both lines move to shared state
The Late 2000s

- Programmable GPUs became mainstream
- Hardware optimised for stream processing in parallel
- Very fast for massively-parallel floating point operations
- Cost of moving data between CPU and CPU is high
- Optimisation meant offloading operations to the GPU
The 2010s

• Modern processors come with multiple CPU and GPU cores
• All cores behind the same memory interface, cost of moving data between them is low
• Increasingly contain specialised accelerators
• Often contain general-purpose (programmable) cores for specialised workload types (e.g. DSPs)
• Optimisation is hard.
• Lots of jobs for compiler writers!
Common Programming Models

- Sequential (can we automatically detect parallelism)?
- Explicit message passing (e.g. MPI, Erlang)
- Annotation-driven parallelism (e.g. OpenMP)
- Explicit task-based parallelism (e.g. libdispatch)
- Explicit threading (e.g. pthreads, shared-everything concurrency)
Parallelising Loop Iterations

- Same problem to targeting SIMD
- Looser constraints: data can be unaligned, flow control can be independent
- Tighter constraints: loop iterations must be completely independent
- (Usually) more overhead for creating threads than using SIMD lanes
Communication and Synchronisation Costs

What's the best implementation strategy for this?

```c
#pragma omp parallel for
for (int i=0 ; i<100 ; i++)
{
    process(a[i]);
}
```
Communication and Synchronisation Costs

What’s the best implementation strategy for this?

```c
#pragma omp parallel for
for (int i=0 ; i<100 ; i++)
{
    process(a[i]);
}
```

- Spawn a new thread for each iteration?
- Spawn one thread per core, split loop iterations between them?
- Spawn one thread per core, have each one start a loop iteration and check the current loop induction variable before doing the next one?
- Spawn one thread per core, pass batches of loop iterations to each one?
- Something else?
HELIX: Parallelising Sequential Segments in Loops

- Loop iterations each run a sequence of (potentially expensive) steps
- Run each step on a separate core
- Each core runs the same number of iterations as the original loop
- Use explicit synchronisation to detect barriers
Execution Models for GPUs

- GPUs have no standardised public instruction set
- Code shipped as source or some portable IR
- Compiled at install or load time
- Loaded to the device to run
SPIR

- Standard Portable Intermediate Representation
- Khronos Group standard, related to OpenCL
- Subsets of LLVM IR (one for 32-bit, one for 64-bit)
- Backed by ARM, AMD, Intel (everyone except nVidia)
- OpenCL programming model extensions as intrinsics
- Design by committee nightmare, no performance portability
SPIR-V

- Standard Portable Intermediate Representation (for Vulkan)
- Khronos Group standard, related to Vulkan
- Independent encoding, easy to map to/from LLVM IR
- Backed by ARM, AMD, Intel and nVidia
- Intended as a compilation target for GLSL, OpenCL C, others
PTX

- Parallel Thread eXecution
- IR created by nVidia
- Semantics much closer to nVidia GPUs
HSAIL

- Heterogeneous Systems Architecture Intermediate Language
- Cross-vendor effort under the HSA umbrella
- More general than PTX (e.g. allows function pointers)

How Standards Proliferate:

See: A/C chargers, character encodings, instant messaging, etc.

Situation:
There are 14 competing standards.

14?! Ridiculous! We need to develop one universal standard that covers everyone's use cases. Yeah!

Soon:
There are 15 competing standards.
Single Instruction Multiple Thread (SIMT)

- SIMD with independent register sets, varying-sized vectors
- Program counter (PC) shared across threads
- All threads perform the same operation, but on different data
- Diverging threads get their own PC
- Only one PC used at a time
- Throughput halves for each divergent branch until only one thread is running
- Explicit barrier instructions allow diverged threads to rendezvous.
Thread Groups

- GPU programs run the same code (kernel) on every element in an input set
- Threads in a group can communicate via barriers and other synchronisation primitives
- Thread groups are independent
GPU Memory Model

- Per-thread memory (explicitly managed, equivalent to CPU cache)
- Shared memory between thread groups (equivalent to CPU shared L3 cache)
- Global memory (read-write, cache coherent)
- Texture memory (read-only or write-only, non-coherent)
Costs for GPU Use

- Setup context (MMU mappings on GPU, command queue). Typically once per application.
- Copying data across the bus is very expensive, may involve bounce buffers.
- Newer GPUs share a memory controller with the CPU (might not share an address space, setting IOMMU mappings can be expensive).
- Calling into the OS kernel to send messages (userspace command submission helps here).
- Synchronisation (cache coherency) between CPU and GPU.
Thought Experiment: memcpy(), memset()

- GPUs and DSPs are fast stream processors
- Ideal for things like memcpy(), memset()
- What bottlenecks prevent offloading all memset() / memcpy() calls to a coprocessor?
- How could they be fixed?
Autoparallelisation vs Autovectorisation

- Autovectorisation is a special case of autoparallelisation
- Requires dependency, alias analysis between sections
- GPU SIMT processors are suited to the same sorts of workloads as SIMD coprocessors
- (Currently) only sensible when working on large data or very expensive calculations
Loop offloading

- Identify all inputs and outputs
- Copy all inputs to the GPU
- Run the loop as a GPU kernel
- Copy all outputs back to main memory
- Why can this go wrong?
Loop offloading

- Identify all inputs and outputs
- Copy all inputs to the GPU
- Run the loop as a GPU kernel
- Copy all outputs back to main memory
- Why can this go wrong?
- What happens if you have other threads accessing memory?
- Shared everything is hard to reason about
Avoiding Divergent Flow Control: If Conversion

- Two threads taking different paths must be executed sequentially
- Execute both branches
- Conditionally select the result
- Also useful on superscalar architectures - reduces branch predictor pressure
- Early GPUs did this in hardware
OpenCL on the CPU

- Can SIMD emulate SIMT?
- Hardware is similar, SIMT is slightly more flexible
- Sometimes, OpenCL code runs faster on the CPU if data is small
- Non-diverging flow is trivial
- Diverging flow requires special handling
Explicit masking for if conversion
Each possible path is executed
Results are conditionally selected
Significant slowdown for widely diverging code
Stores, loads-after-stores require special handling
OpenCL Synchronisation Model

- Explicit barriers block until all threads in a thread group have arrived.
- Atomic operations (can implement spinlocks)
 - Why would spinlocks on a GPU be slow?
OpenCL Synchronisation Model

- Explicit barriers block until all threads in a thread group have arrived.
- Atomic operations (can implement spinlocks)
 - Why would spinlocks on a GPU be slow?
 - Branches are slow, non-streaming memory-access is expensive...
 - Random access to workgroup-shared memory is cheaper than texture memory
Barriers and SIMD

- Non-diverging flow, barrier is a no-op
- Diverging flow requires rendezvous
- Pure SIMD implementation (single core), barrier is where start of a basic block after taking both sides of a branch
- No real synchronisation required
OpenCL with SIMD on multicore CPUs

- Barriers require real synchronisation
- Can be a simple pthread barrier
- Alternatively, different cores can run independent thread groups
Questions?